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When electromagnetic energy propagates through a material medium, the paths of energy flow may be altered, as compared to
propagation in free space. We consider radiation emitted by an electric dipole, embedded in a medium with permittivity εr and
permeability μr . For a linear dipole in free space, the field lines of energy flow are straight, but when the imaginary part of εr is finite,
the field lines in the material become curves in the near field of the dipole. Therefore, the energy flow is redistributed due to the
damping in the material. For a circular dipole in free space, the field lines of energy flow wind around the axis perpendicular to the
plane of rotation of the dipole moment. When εr has an imaginary part, this flow pattern is altered drastically. Furthermore, when
the real part of εr is negative, the direction of rotation of the flow lines reverses. In that case, the energy in the field rotates opposite
to the direction of rotation of the dipole moment. It is indicated that in metamaterials with a negative index of refraction this may
lead to an observable effect in the far field.

1. Introduction

When optical radiation from a localized source is observed at
a large distance, it appears as if the light travels along straight
lines. Similarly, light scattered or reflected by an object seems
to travel from the object to an observer along straight lines,
known as optical rays. These lines are the flow lines of the
energy in the radiation field. In close vicinity of the source,
however, these flow lines are in general curves, and intricate
field line patterns may appear. Such structures can be found
when the flow of radiation is resolved on a scale smaller than
a wavelength. Particularly interesting is the possible presence
of singularities and optical vortices. The first prediction of
the existence of an optical vortex was made by Braunbek and
Laukien in 1952 [1]. They considered the diffraction of a
plane wave around the edge of a conducting half plane, and
they found that a vortex should appear at the illuminated side
of the plane, and close to the edge. Another mechanism that
may lead to singularities and vortices in the energy flow is
interference. We have shown recently [2, 3] that when a point
source is located near a reflecting surface, numerous vortices
are present in the energy-flow pattern when the source is

about a wavelength away from the surface. A different type
of vortex in the energy-flow pattern results from a rotation
inside the source. We shall show in the next section that
radiation emitted by an electric dipole may have such a
vortex structure [4], and such vortices appear in multipole
radiation of any order [5].

A much more subtle effect is the redirection of energy
flow when the radiation passes through a material medium.
A material will in general absorb radiation along its path of
propagation, but we shall show that the presence of material
will in general also lead to a redistribution of the power flow.
It will be shown that in media the field lines curve due to the
presence of the media, and that vortices which are present
due to a rotation in the source are altered dramatically by the
embedding medium.

2. Electric Dipole Radiation in Free Space

The most important source of electromagnetic radiation is
arguably the oscillating electric dipole. When the current
density in a localized source oscillates harmonically with
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Figure 1: Setup for a nano-particle in a laser beam.

angular frequency ω, it has an electric dipole moment of the
form

d(t) = Re
(

de−iωt
)

, (1)

where d is the complex amplitude. When the dimension of
the source is small compared to the wavelength of the light,
then electric dipole radiation gives the dominant contribu-
tion to the emitted radiation (compared to higher order
multipoles). For example, when a small particle, like an
atom, a molecule or a nanoparticle, is irradiated by a laser of
angular frequency ω, then the emitted, or scattered, radiation
will be electric dipole radiation, at least to a very good appro-
ximation. The setup is illustrated in Figure 1.

The emitted electric field will have the form

E(r, t) = Re
[

E(r)e−iωt
]

, (2)

with E(r) the complex amplitude, and the magnetic field
B(r, t) can be represented in a similar form. The Poynting
vector is defined as

S(r) = 1
2μo

Re
[

E(r)∗ × B(r)
]
. (3)

This is the time-averaged Poynting vector, in which terms
that oscillate at twice the optical frequency have been drop-
ped, since these average to zero on a time scale of an optical
cycle. The complex amplitudes of the electric and magnetic
fields of an oscillating dipole are well known [6], and this
Poynting vector can readily be constructed.

The field lines of energy flow are the field lines of the
vector field S(r). When we indicate by r a point on a field
line, then the curve can be parametrized as r(u), where u is a
dummy variable. At any point along the field line, the vector
S(r) must be on the tangent line, and therefore the field lines
r(u) are solutions of the autonomous differential equation

dr
du

= f (r)S(r). (4)

Here, f (r) can be any positive function of r since a field line
pattern only depends on the directions of the vectors of the
vector field, and not on their magnitude. A common choice
for the function f (r) is 1/|S(r)|, so that the right-hand side
of (4) becomes a unit vector, and the parameter u is equal
to the arc length measured along a field line. Each numerical
step size Δu is then a step Δu along the field line, and this
more or less guarantees an equal spacing of numerical data

z

Figure 2: Field lines of the Poynting vector for the radiation emitted
by a linear dipole in free space.

along each field line. Through each point (xo, yo, zo) in space
we have a field line, and (4) can be integrated numerically,
given this starting point (xo, yo, zo).

Let us first consider a linear dipole moment for which
d = doez with do > 0. Then the dipole moment d(t) oscillates
harmonically along the z axis, and the Poynting vector is
found to be

S(r) = 3Po

8πr2
r̂sin2θ, (5)

with (r, θ,φ) the spherical coordinates with respect to the z
axis. The constant Po is defined as

Po = ck4
o

12πεo
d2

o, (6)

with ko = ω/c, and this Po equals the total power emitted by
the dipole. We see from (5) that S(r) is proportional to the
radial unit vector r̂ for all field points, and therefore the field
lines of S(r) are straight lines, emanating from the location
of the dipole. The field line pattern is shown in Figure 2.

A linear dipole moment is induced when a particle is
illuminated by a linearly polarized laser, as in the setup in
Figure 1, and the oscillation direction is along the direction
of the polarization of the beam. When this laser is left-
circular polarized then the electric field vector of the beam
rotates counterclockwise when looking into the oncoming
beam. If we take the propagation direction as the z axis, then
this electric field rotates counterclockwise in the xy plane
when viewed down the positive z axis. Then the complex
amplitude of the induced dipole moment is

d = − do√
2

(
ex + iey

)
(7)

and the dipole moment itself is

d(t) = − do√
2

[
ex cos(ωt) + ey sin(ωt)

]
. (8)



ISRN Optics 3

0

0.5

1

0

0.5

10 0.5 1

−1
−0.5

−0.5

x

y

z

Figure 3: A typical field line of the Poynting vector for the radiation
emitted by a circular dipole in free space.

This dipole moment rotates counterclockwise in the xy
plane, so it has the same direction of rotation as the incident
beam. The Poynting vector is found to be

S(r) = 3Po

8πr2

[(
1− 1

2
sin2θ

)
r̂ +

1
q

(
1 +

1
q2

)
eφ sin θ

]
,

(9)

where we have set q = kor for the dimensionless distance
between the dipole and the field point r. In units of q, a
distance of 2π corresponds to one optical wavelength. Inte-
restingly, (4) for the field lines can be solved in closed form
for this simple system [4, 7]. The term proportional to r̂ in
(9) corresponds to power flowing into the radially outward
direction, but now a term proportional to eφ appears. This
contribution gives rise to a rotation of the field lines around
the z axis. A typical field line is shown in Figure 3. The vari-
ables on the axes are x = kox, and so forth. It can be shown
that each field line lies on a cone around the z axis, and a
field line spirals around the z axis while staying on this cone.
We see from the figure that the spatial extent of the vortex
structure is well below a wavelength. At a large distance from
the source, as compared to a wavelength, the term containing
eφ vanishes, and each field line approaches a straight line.
Figure 4 shows several field lines on the same cone, and the
figure clearly gives the impression of energy swirling around
the z axis in the near field.

Figure 5 shows a field line for the radiation emitted
by a rotating dipole, as seen from far away. The field line
approaches asymptotically the straight line �, and we see that
it appears as if the line came from a point in the xy plane,
indicated by vector qd, which is displaced with respect to the
location of the dipole. Therefore, when viewed from the far
field, it seems that the position of the dipole is shifted as a
result of the rotation of the field lines in the near field [8].
The actual image of the source is a result of the observation
of a bundle of field lines, rather than a single line, and a more
detailed analysis shows that the rotation of the field lines
indeed results in a shift of the image [9–11]. This shift has
been observed experimentally [12].
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Figure 4: Energy flow pattern in the near field of a circular dipole
in free space.

 
qd

S(r)

(θo , o)

planex y

z

ℓ

o

φ

Figure 5: Due to the rotation near the source, a field line seems to
be displaced when viewed from the far field.

3. Electric Dipole Radiation in a Medium

The electromagnetic properties of a material are represented
by the relative permittivity εr and the relative permeability μr .
Both are complex, in general, with a nonnegative imaginary
part, and they depend on the angular frequency ω. The index
of refraction n of the material is a solution of

n2 = εrμr , (10)

and we take the solution with

Im(n) ≥ 0. (11)
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For an oscillating electric dipole embedded in this medium,
the complex amplitudes of the emitted electric and magnetic
fields are

E(r) = − 1
3εoεr

dδ(r) + μr
k3

o

4πεo

×
{

d− (r̂ · d)r̂ + [d− 3(r̂ · d)r̂]
i

nq

(
1 +

i

nq

)}

× einq

q
,

(12)

B(r) = nμr
c

k3
o

4πεo
(r̂× d)

(
1 +

i

nq

)
einq

q
. (13)

The first term on the right-hand side of (12) is the self field,
which only exists inside the point source. The remaining
terms are proportional to exp(inq), and these terms represent
outgoing spherical waves.

The Poynting vector in a medium is defined as

S(r) = 1
2μo

Re

[
1
μr

E(r)∗ × B(r)

]
. (14)

First we define the vector field σ(q) by

S(r) = ∣∣μr
∣∣2 3Po

8πr2
e−2q Imnσ

(
q
)
. (15)

The overall factor which is split off is positive, and therefore
the field lines of σ(q) are the same as the field lines of S(r).
The field σ(q) is dimensionless and it only depends on the
dimensionless representation q of the field point where σ(q)
is evaluated. The factor exp(−2q Imn) gives an exponential
decay of the magnitude of the Poynting vector along a field
line when Imn > 0, and this corresponds to absorption in the
material. The direction of the Poynting vector is unaffected
by this absorption, since it is an overall positive factor. We
introduce the complex unit vector u by

d = dou, do > 0, u · u∗ = 1. (16)

From (12) and (13), we obtain

σ
(

q
) = [1− (r̂ · u∗)(r̂ · u)]r̂ Re

[
n

μr

(
1 +

i

nq

)]

+

∣∣∣∣∣ 1 +
i

nq

∣∣∣∣∣
2

1

|n|2q
× {[1− 3(r̂ · u∗)(r̂ · u)]r̂ Im(εr)

+2 Im[εr(r̂ · u∗)u]
}
.

(17)

In the far field, where r is much larger than an optical
wavelength, we have q = kor � 1, and (17) simplifies to

σ
(

q
) ≈ [1− (r̂ · u∗)(r̂ · u)]r̂ Re

(
n

μr

)
. (18)

The Poynting vector is approximately proportional to r̂,
which is radially outward. Therefore, in the far field the field
lines of energy flow asymptotically approach a straight line,
as in Figure 5. Consequently, any curving of the field lines
can only occur in the near field, for example, within a few
wavelengths of the dipole. Further inspection of the right-
hand side of (17) shows that all terms are proportional to r̂,
except the term containing Im[εr(r̂ · u∗)u]. Therefore, any
curving of field lines is due to this factor.

4. Linear Dipole in a Medium

We now consider a linear dipole, oscillating along the z axis,
so we have u = ez. Equation (17) simplifies to

σ
(

q
) = r̂sin2θ Re

[
n

μr

(
1 +

i

nq

)]

+

∣∣∣∣∣ 1 +
i

nq

∣∣∣∣∣
2

1

|n|2q
× [r̂(1− 3cos2θ

)
+ 2ez cos θ

]
Im εr .

(19)

For a linear dipole in free space, εr , μr , and n equal unity,
and (19) becomes σ(q) = r̂sin2θ, as in (5). Vector σ(q) is
proportional to r̂ at all field points, and therefore the field
lines are straight and run radially outward, as illustrated in
Figure 2. The only term not proportional to r̂ in (19) is the
term containing ez cos θ Im εr . This term is proportional to
ez, and results in a bending of the field lines into the z
direction. Figure 6 depicts the resulting field line pattern. A
more detailed analysis [13] shows that near the z axis, the
field lines approach the z axis under 90◦, and stop there.
Therefore the z axis is a singular line of the flow pattern. In
free space, near the z axis the field lines run parallel to the
z axis whereas in a medium they are perpendicular to the z
axis. Field lines that start at the dipole and stop at the z axis
represent nonradiative energy flow in the sense that energy
transported along these curves does not end up in the far
field.

The term responsible for the bending of the field lines
is proportional to Im εr , so this phenomenon only appears
when Im εr > 0. Since Im εr > 0 leads to dissipation of energy
upon propagation, we conclude that the curving of the flow
lines is a result of damping in the material. Interestingly, an
imaginary part of μr does not have this effect.

5. Rotating Dipole in a Medium

In this section we consider the rotating dipole, with d given
by (7). Working out the right-hand side of (17) yields

σ
(

q
) =

(
1− 1

2
sin2θ

)
r̂ Re

[
n

μr

(
1 +

i

nq

)]
+

∣∣∣∣∣ 1 +
i

nq

∣∣∣∣∣
2

× 1

|n|2q
{[(

1− 1
2

sin2θ
)

r̂ +
1
2

sin(2θ)eθ

]
Im εr

+eφ(sin θ) Re εr

}
.

(20)
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Figure 6: Shown are field lines of the Poynting vector for a dipole
oscillating along the z axis. The parameters are εr = 1.7 + 0.06i
and μr = 1, which are the values for water at 3 μm. The index of
refraction is n = 1.3 + 0.023i.

It can be shown that

Re

[
n

μr

(
1 +

i

nq

)]
≥ 0 (21)

for any εr and μr , so the first term on the right-hand side
corresponds to radial power flow, and this is the only term
that survives in the far field. The last term is proportional to
eφ, and this gives rise to rotation of field lines around the z
axis. If the imaginary part of εr would be zero, the remaining
terms would vanish, and the field lines would wind around
the z axis and lie on a cone, as in Figures 3 and 4. The term
containing eφ is proportional to Re εr . For ordinary dielec-
trics, this is positive, but for other materials this may be
negative. In that case, the field lines rotate around the z axis
opposite to the rotation direction of the dipole moment.

When the imaginary part of εr is positive, a term with eθ
appears, and consequently the field lines do not lie on a cone
anymore. Figure 7 shows two typical field lines, and Figure 8
shows the corresponding field lines in free space. We notice
that due to the damping, the cone has become a funnel, and
the field lines are not as densely wound around the z axis.
Even though the imaginary part of εr is very small for the
illustration in Figure 7, the effect is dramatic. The rotation
of the field lines near the source leads to a displacement of
the dipole image in the far field, as in Figure 5 [14]. Just as
for the dipole in free space, this provides a possible method
for experimental observation of this phenomenon. As for the
linear dipole, we find here also that the imaginary part of εr
leads to a redistribution of the energy flow in the near field.
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Figure 7: Shown are two field lines for a circular dipole in a
dielectric with εr = 1 + 0.07i and μr = 1.
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Figure 8: Shown are two field lines for a circular dipole in free
space. The dipole rotates counterclockwise when viewed down the
positive z axis, and the field lines wind around the z axis in the same
direction.

6. Dipole in a Negative Index of
Refraction Material

For most natural materials, the value of μr is very close to
unity. For dielectrics, the real part of εr is positive, and the
imaginary part of εr is usually very small. For metals, the real
part of εr can be positive (in the UV) or negative (visible and
below), and the imaginary part of εr is relatively small. If the
real part of εr is positive and the imaginary part is small, then
the index of refraction n is approximately positive, and the
material is transparent. When Re εr < 0, n is approximately
positive imaginary, and light cannot propagate through the
medium. Most waves are evanescent and do not reach the far
field.
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There is, however, no physical reason for any limitations
on the values of εr and μr , except that their imaginary parts
cannot be negative (for causality reasons). If we could have a
material for which both εr and μr would be almost negative,
at a certain frequency, then it follows from (10) and (11) that
the index of refraction is negative. Such a medium would
be transparent, even though it would have the appearance
of a metal. However, it appears that such materials do not
occur in nature. Metamaterials are artificially structured
composites, consisting of arrays of subwavelength structures.
Their electromagnetic response is not only determined by the
material from which they are constructed, but also by the
geometry of the design. Since the dimension of the structures
is well below a wavelength, the material can be represented
as a continuum, and the electromagnetic properties can be
accounted for by εr and μr . Of particular interest are mate-
rials for which the real parts of both εr and μr are negative,
and for which the imaginary parts of both εr and μr are small.
These materials have a negative index of refraction. It was
shown by Veselago [15] that such materials would have very
peculiar properties. In particular, upon refraction through an
interface with such a material, an optical ray is transmitted at
the opposite side of the normal to the surface, as compared
to refraction by a dielectric medium. This is a result of the
fact that in such a material the Poynting vector is opposite to
the direction of the phase velocity.

Let us assume that εr and μr are both positive or both
negative. Then n has the same sign as εr and μr , and (17)
simplifies to [16]

σ
(

q
) = n

μr
[1− (r̂ · u∗)(r̂ · u)]r̂

+

(
1 +

1
n2q2

)
2
μrq

Im(r̂ · u∗)u.

(22)

For a linear dipole embedded in this medium, vector u is
real, and the second term on the right-hand side vanishes.
Therefore, σ(q) is proportional to r̂, and the field lines are
straight as in Figure 2. For a circular dipole, the second term
contributes, and this gives the rotations in the field lines. The
only difference between a material with n > 0 and n < 0
is the sign of μr in this term. For a dielectric, this sign is
positive, and the field lines rotate counterclockwise in the xy
plane, when viewed down the z axis, just as in free space.
For a negative index of refraction material, the sign of μr is
negative, and therefore this reverses the direction of rotation
as compared to free space or a dielectric. Figure 8 shows two
field lines for a circular dipole in free space, and Figure 9 for
a circular dipole in a negative index of refraction material.
We see from Figure 9 that the field lines rotate around the z
axis opposite to the rotation direction of the dipole. It was
shown in the previous section that the direction of rotation
is determined by the sign of Re εr. In the derivation of (22)
from (17) we have used the fact that εr and μr have the
same sign. So the reversal of rotation direction is a result of
Re εr < 0 for the case of a metamaterial with negative index
of refraction.
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Figure 9: Two field lines for a circular dipole in a negative index
of refraction material. The dipole rotates counterclockwise when
viewed down the positive z axis, and the field lines wind around
the z axis in the opposite direction.

7. Conclusions

The flow lines of electromagnetic energy are the field lines
of the Poynting vector. Far away from a localized source, an
interface or any obstacles, these field lines approach asymp-
totically straight lines. Near a source or any structure in the
field, these field lines are usually curves, and intricate flow
patterns of energy may appear. This can be a result of dif-
fraction, interference, or a rotation in the source itself. A
much less obvious mechanism for the curving of field lines
is the presence of an embedding medium for the source.
We have considered the field lines of energy flow for an
electric dipole, and we have compared the flow patterns in
free space to the flow patterns in an embedding medium. For
a linear dipole, the field lines in free space are straight lines,
as shown in Figure 2, but in an embedding medium these
field lines curve as in Figure 6. The curving appears due to
the imaginary part of the dielectric constant εr , and hence
is a result of damping in the material. It was shown that
already a very small imaginary part has dramatic effects in
the optical near field, as can be seen from Figure 6. Near the
dipole axis (the z axis in the figure), the field lines approach
this line under 90◦, whereas in free space the field lines run
parallel to this axis. The semiloops in the figure represent
energy flow from the dipole to the z axis, and this energy
does not propagate to the far field. Therefore, as a result of
the damping, some energy stays in the near field, where it
is absorbed by the medium. It can also be seen from the
figure that the field lines come out of the dipole in a direction
perpendicular to the axis, whereas in free space the energy
leaves the dipole under any angle. The imaginary part of εr
does not only result in absorption upon propagation, but it
leads to a redistribution of the energy flow as well.

For a rotating dipole moment in free space, the field lines
of energy flow swirl around the z axis (which is perpendicular
to the plane of rotation of the dipole moment) numerous
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times, before asymptotically approaching a straight line, as
shown in Figures 3–5. Each field line lies on a cone around
the z axis. When this dipole is embedded in a medium,
this field line pattern changes, and some typical field lines
are shown in Figure 7. It can be shown that each field line
leaves the dipole along the z axis, whereas in free space the
field lines come out of the dipole in any direction (the angle
of the cone). The cone changes to a funnel shape, and the
density of the winding pattern of each field line diminishes
considerably. This change is again due to the imaginary part
of εr . Interestingly, the imaginary part of the permeability μr ,
which also accounts for absorption, appears to have no effect.

A metamaterial is an artificial medium, which can have
a combination of values of εr and μr that do not occur in
nature. Of particular interest are materials for which the real
parts of εr and μr are both negative. Such materials have a
negative index of refraction, if the absorption is relatively
small, and these materials are transparent. The ultimate goal
is to artificially construct a material with n = −1 for a given
frequency. When a linear dipole is located in such a medium,
the flow lines of energy are identical to the flow lines in free
space. However, for a rotating dipole moment, the direction
of rotation of the field lines around the z axis reverses, as
compared to the direction of rotation in free space. It was
shown that this effect occurs for any material for which the
real part of εr is negative, so this is not really a unique
property of negative index of refraction materials. However,
natural materials with Re εr < 0 usually have μr ≈ 1, and
therefore the index of refraction is imaginary. Such materials
do not support propagating modes, and even though the field
lines reverse direction, this effect only appears in the near
field inside the material, and is most likely not observable.
For a negative index of refraction material, the energy flow-
ing along the reversed field lines travels to the far field, and is
amenable to direct experimental observation. The image of
the dipole will shift, as indicated in Figure 5, but this shift is
in the opposite direction as for emission in free space.
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